Abstract

BackgroundNKT cells play an important role in anti-tumor immunity. Alpha-galactosylceramide (α-GalCer), a synthetic glycolipid is presented to natural killer T (NKT) cells by most antigen-presenting cells through CD1d molecules leading to activation of NKT cells. However, the precise mechanisms of how α-GalCer-activated NKT regulate the polarization of the macrophages and effector T cells in the solid tumor are not studied adequately.MethodsWe induced solid tumor in C57BL/6 mice by subcutaneous injection of B16F10 cell line (1 X 106 cells) and monitored the tumor growth. Animals were given an intraperitoneal injection of α-GalCer (2 μg/injection) in 200 μl PBS on day + 1, + 5, + 10, + 15, and + 20 (with respect to tumor cell injection). Immune cells were characterized using flow cytometry and immunofluorescence staining. NK cells, Gr1+ cells, and F4/80+ macrophages in the mice were depleted by intravenous injection of cell-specific antibodies. Statistical analysis was performed using Student’s t-test or one-way ANOVA.ResultsOur results showed that intratumoral NKT cells have a lower frequency of CD69, CD25, CD122, and IFN-γR expression; produced less inflammatory cytokines such as IFN-γ, TNF-α, and GM-CSF; higher frequency CD62L+ NKT cells; and also showed reduced proliferation as compared to the splenic NKT cells. Mice treated with α-GalCer showed a significantly increased frequency of IFN-γ-producing NKT cells, CD8+ T cells, and effector Th1 cells. Depletion of NK cells in α-GalCer-treated mice showed a lower frequency of IFN-γ-producing CD4+ and CD8+ T cells in the tumor and prevented the α-GalCer-induced tumor growth. NKT cell activation with α-GalCer treatment significantly increased the iNOS+CD206− M1-macrophages and reduced the iNOS−CD206+ M2-macrophages in the spleen and tumor, and depletion of F4/80+ macrophages prevented the α-GalCer-induced reduction in the tumor growth.ConclusionsWe showed that activation of NKT cell with α-GalCer modulates the frequency of M1-macrophages and effector Th1 cells in the secondary lymphoid tissues and tumor microenvironment and inhibit tumor growth. The finding suggests that activation of NKT cells with α-GalCer may provide an effective anti-cancer outcome.

Highlights

  • Natural killer T (NKT) cells show the characteristics of innate as well as adaptive immune cells

  • Activation and proliferation status of intratumoral natural killer T (NKT) cells Subcutaneous injection of B16F10 melanoma cells in syngeneic C57BL/6 mice showed the progression of tumor growth, and tumor showed infiltration of mononuclear cells, including CD3+NK1.1+ (NKT) cells (Fig. 1a)

  • CD62L+ NKT cells show prolonged persistence within tumors and are reported to have anti-tumor activity [27]. Consistent with these reports, we observed that intratumoral NKT cells had a significantly higher frequency of CD62L+NKT cells as compared to splenic NKT cells, indicating that CD62L might help in the accumulation of NKT cells in the tumor microenvironment (Fig. 1b)

Read more

Summary

Introduction

Natural killer T (NKT) cells show the characteristics of innate as well as adaptive immune cells. These cells express T cell receptor (TCR) and respond to self- or nonself-lipid antigens loaded on CD1d molecules. NKT cell activation leads to rapid production of inflammatory cytokines and modulates the function of several effectors and regulatory immune cells both in mice and humans [1, 2]. The type-I NKT cells ( known as invariant NKT cells or iNKT cells) express semiinvariant Vα14-Jα18 TCR chain in mice and Vα24-Jα18 chains in humans, and recognize self- or microbial-lipids presented by CD1d molecules [1, 3]. The precise mechanisms of how α-GalCer-activated NKT regulate the polarization of the macrophages and effector T cells in the solid tumor are not studied adequately

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call