Abstract
For the response of immunologically competent blood cells to exercise, the importance of afferent nerve impulses was evaluated. On separate days, seven males cycled in a recumbent position approximately 60% of maximal O2 uptake with and without sensory nerve blockade by lumbar epidural anesthesia. Blood samples were collected after 60 min of rest, 20 min of exercise, and 120 min postexercise. Subsequently, on each day, the subjects were exposed to 11.5% O2-88.5% N2 for 10 min. This was followed by 20 min of hypoxic exercise at the same work rate, and a final blood sample was obtained. The concentrations of lymphocytes expressing the cluster designation (CD) cell-surface antigens CD3, CD4, CD8, and CD14 became elevated during exercise, and these responses were enhanced by hypoxia (P < or = 0.01). The most pronounced changes were within the concentrations of CD16+ and CD56+ natural killer cells, which increased twofold during normoxic and fivefold during hypoxic exercise (P < or = 0.01). Sensory nerve blockade decreased the number of CD3+ and CD4+ cells and increased the percentage of CD16+ cells, independent of exercise and hypoxia (P < or = 0.05). Sensory nerve blockade caused minor enhancement in the increase of unstimulated natural killer cell activity during exercise (P = 0.07) and enhanced the interferon-alpha-stimulated activity at normoxia (P < or = 0.05), whereas no effect was detected at hypoxia. The results demonstrate that the responses of immunological competent cells to normoxic and hypoxic exercise are not abolished by blockade of nerve impulses from active muscle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have