Abstract

Natural blue and colorless rare-gem mineral specimens of euclase from Brazil are investigated by electron paramagnetic resonance (EPR). Angular dependences of Fe3+ EPR spectra in three mutually perpendicular crystal planes are analyzed revealing g and D tensors with significant low-symmetry effects, as for example, the high asymmetry parameter E/D = 0.28. Fourth-order degree Stevens parameters are also included in analysis. The anisotropy of both g and D tensors is consistent with Fe3+ substituting for Al3+ ions in strongly distorted AlO5(OH) octahedra in which the oxygen distances range from 1.85 to 1.98 A. Fe3+ is not responsible for the blue color because colorless and blue euclase show nearly the same Fe3+ concentration as measured by EPR. However, total iron content in blue sample is much higher than in the colorless one suggesting that the existing model that Fe2+–Fe3+ intervalence charge transfer transition may explain the blue color of euclase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call