Abstract
We integrate a model for filter response statistics of natural images into a variational framework for image segmentation. Incorporated in a sound probabilistic distance measure, the model drives level sets toward meaningful segmentations of complex textures and natural scenes. Despite its enhanced descriptive power, our approach preserves the efficiency of level set based segmentation since each region comprises two model parameters only. Analyzing thousands of natural images we select suitable filter banks, validate the statistical basis of our model, and demonstrate that it outperforms variational segmentation methods using second-order statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.