Abstract

Building on recent progress in modeling filter response statistics of natural images we integrate a statistical model into a variational framework for image segmentation. Incorporated in a sound probabilistic distance measure the model drives level sets toward meaningful segmentations of complex textures and natural scenes. Since each region comprises two model parameters only the approach is computationally efficient and enables the application of variational segmentation to a considerably larger class of real-world images. We validate the statistical basis of our approach on thousands of natural images and demonstrate that our model outperforms recent variational segmentation methods based on second-order statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.