Abstract
Abstract This work develops an analytical model of planetary gears and uses it to investigate their natural frequencies and vibration modes. The model admits three planar degrees of freedom for each of the sun, ring, carrier and planets. It includes key factors affecting planetary gear vibration such as gyroscopic effects, time-varying stiffness, and static transmission error excitation. For the linear time-invariant case, examination of the associated eigenvalue problem reveals the well-defined structure of the vibration modes, where the special structure results from the cyclic symmetry of planetary gears. Vibration modes are classified into rotational, translational and planet modes. The unique characteristics of each type of mode are analytically investigated in detail. For each class of mode, reduced-order eigenvalue problems are derived. The modal strain energy distributions are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.