Abstract

This work develops an analytical model of planetary gears and uses it to investigate their natural frequencies and vibration modes. The model admits three planar degrees of freedom for each of the sun, ring, carrier and planets. Vibration modes are classified into rotational, translational and planet modes. The natural frequency sensitivities to system parameters are investigated for tuned (cyclically symmetric) planetary gears. Parameters under consideration include support and mesh stiffnesses, component masses, and moments of inertia. Using the well-defined vibration mode properties of tuned planetary gears, the eigen sensitivities are calculated and expressed in simple exact formulae. These formulae connect natural frequency sensitivity with the modal strain or kinetic energy and provide efficient means to determine the sensitivity to all stiffness and inertia parameters by inspection of the modal energy distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call