Abstract

As part of the efforts to reduce the environmental impacts caused by the aviation sector, the use of bio-based instead of fossil-based materials has been proposed as one possible mitigation option. Natural Fibre Polymer Composites have proven to have a higher environmental performance in the automotive sector and are emerging as an option for weight reduction in aircrafts. This study quantifies, through Life Cycle Assessment, the environmental performance of specific flax-based composite panels intended for aircrafts as interior fitting elements (i.e. partition panels, tray tables, baggage compartments) compared to a glass fibre/epoxy composite with a honeycomb core. Through system expansion, the fate of co-products issued from the production of the flax fibre technical textile used as reinforcement in the biocomposite material was considered in the assessment. Resultsshowed that for an application in the aeronautics sector, the weight of the panels is the upmost critical parameter shaping the overall environmental performance of panels. Focusing on the panel production only, the biocomposite panel showed a higher environmental performance in the categories of climate change and marine eutrophication compared to the conventional panel, and the fire suppressant agent was identified as the main contributor to the environmental impacts of the bio-based panel. Yet these gains were negligible when considering the full life cycle of the panels, due to the higher weight (14%) of the bio-based panels; which is linked to the bio-based panel being still at the prototype stage.In order to improve the environmental performance of the biocomposite panel and thus reduce its weight, it was shown relevant to optimize the geometry of the panel itself, especially its core, so less resin could be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.