Abstract

This paper reports a numerical study on natural convection from a protruding heater located at the bottom of a square cavity filled with a copper-water nanofluid. The vertical walls of the cavity are cooled isothermally; the horizontal ones are adiabatic, and the heater is attached to the bottom wall. The heat source is assumed either to be isothermal or to have a constant heat flux. The effective viscosity and thermal conductivity of the nanofluid are modeled according to Brinkman and Patel, respectively. Numerical solutions of the full-governing equations, based on the lattice Boltzmann method, are obtained for a wide range of the governing parameters: the Rayleigh number, Ra; the Prandtl number, Pr; the geometrical parameters specifying the heater; the volume fraction of nanoparticles, Φ. For a particular geometry, it has been found that, for a given Ra, heat transfer is enhanced with increasing Φ, independently of the thermal boundary condition applied on the heater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.