Abstract
Purpose – The purpose of this paper is to make a numerical study of natural convection of water‐based nanofluids in a square cavity when a discrete heat source is embedded on the bottom wall, applying a “nanofluid‐oriented” model for the calculation of the effective thermal conductivity (Xu‐Yu‐Zou‐Xu's model) and the effective dynamic viscosity (Jang‐Lee‐Hwang‐Choi's model). Another motivation is the numerical solution of the equations of the flow with a meshless method.Design/methodology/approach – A meshless point collocation method with moving least squares (MLS) approximation is used. A test validation study of the numerical method takes place for pure water flow, as well for water/Al2O3 nanofluids. The influence of pertinent parameters such as Rayleigh number (Ra), the non‐uniform nanoparticle size keeping the mean nanoparticle diameter fixed, the volume fraction of nanoparticles and the location of heat source on the cooling performance are studied.Findings – The presence of a discrete heat source, ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.