Abstract
Purpose – The purpose of this paper is to investigate natural convection fluid flow and heat transfer inside C-shaped enclosures filled with Cu-Water nanofluid numerically using the finite difference method. Design/methodology/approach – In this investigation, the finite difference method is employed to solve the governing equations with the boundary conditions. Central difference quotients were used to approximate the second derivatives in both the X and Y directions. Then, the obtained discretized equations are solved using a Gauss-Seidel iteration technique. Findings – It was found from the obtained results that the mean Nusselt number increased with increase in Rayleigh number and volume fraction of Cu nanoparticles regardless aspect ratio of the enclosure. Moreover the obtained results showed that the rate of heat transfer increased with decreasing the aspect ratio of the cavity. Also, it was found that the rate of heat transfer increased with increase in nanoparticles volume fraction. Also at low Rayleigh numbers, the effect of Cu nanoparticles on enhancement of heat transfer for narrow enclosures was more than that for wide enclosures. Originality/value – This paper is relatively original for considering C-shaped cavity with nanofluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.