Abstract
Conjugate natural convection heat transfer in an annulus between horizontal isothermal circular cylinders with three equally spaced axial spacers has been studied theoretically and experimentally. A thin-fin approximation was used to model the thermal boundary condition of the spacers in the two-dimensional finite difference numerical computations. Rayleigh number, Prandtl number, diameter ratio, and location and thermal conductivity of the spacers were varied parametrically to determine the variation in flow patterns, temperature distribution and heat transfer. Spacers of low conductivity can decrease the natural convection heat transfer by as much as 20 percent below that for a simple unobstructed annulus. However, radial conduction through spacers of high conductivity overwhelms the natural convection heat transfer between the cylinders. Two diameter ratios were tested experimentally in a Mach-Zehnder interferometer using air at atmospheric pressure with stainless steel spacers between copper cylinders. The numerical and experimental temperature distributions and local convective heat-transfer coefficients show good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.