Abstract

ABSTRACTThis paper reports on natural convection heat transfer in a porous annulus between concentric horizontal circular and square cylinders. The heated inner circular cylinder is maintained at the uniform hot temperature Th, whereas the cooled outer square duct is held at the uniform cold temperature Tc. A pressure-based collocated finite-volume method is used to numerically investigate the effects on the total heat transfer of Rayleigh number (Ra), Prandtl number (Pr), Darcy number (Da), porosity (ϵ), and annulus aspect ratio (R/L). Results demonstrate that at low Ra values, conduction is the dominant heat transfer mode. Convection contribution to total heat transfer becomes more important beyond a critical Ra value, which decreases with an increase in Da and/or ϵ. Furthermore, an increase in the enclosure aspect ratio (R/L) leads to an increase in total heat transfer. A similar behavior is obtained with Prandtl number, where predictions indicate higher heat transfer rates at higher Pr values with its effect increasing as Ra increases. Streamlines and isotherms reveal flow separation for some of the reported cases. Limited computations are also performed for natural convection in a porous annulus between two horizontal concentric circular cylinders having the same inner and outer perimeters as the investigated enclosure. Comparison of the predicted average Nusselt number estimates with similar ones obtained in the original enclosure reveals a large percentage difference in values, demonstrating the strong influence of geometry on natural convection in enclosures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call