Abstract

The thermal energy transport analysis with chemotaxis in the free convective flow of viscous nanofluid over stretchable vertically inclined heated sheet is addressed in this article. The fluid forced and free convection motion is investigated and discussed with physical reasoning. The fluid also contains microorganism heavy-bottom species, and their chemotactic motion is studied. In the light of Buongiorno model, the impact of Brownian motion and thermophoresis slip mechanism on thermal conduction in the nanofluid is analyzed. The work is based on the similarity analysis of governing partial differential equations (PDEs) which lead to non-dimensional ordinary differential equations (ODEs). The solution of resulting flow and heat equations is computed via bvp4c technique. The outcomes are represented in graphical abstract. It is noted that free convective flow field increases near to the surface of sheet then it decays to free stream exponentially. Higher magnitude of thermophoretic force boost up the thermal energy transport in nanofluid flow. The Brownian motion enhances temperature profile and lower down the convection velocity. Chemotaxis motion of species in nanofluid is increasing function of bioconvective Peclet number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.