Abstract
Natural convection in a liquid metal heated locally at its upper surface and affected by a vertical magnetic field is investigated both experimentally and numerically. The experiments are conducted in a cylindrical test cell of large aspect ratio which is typical for application. The cell is filled with the liquid alloy GaInSn in eutectic composition. Temperature and velocity are measured using thermocouples and an electric potential probe, respectively. In the absence of the magnetic field the experimental results indicate a dependence of the Nusselt number on the Rayleigh number according to the law Nu∝ Ra 0.191. The particular value of the scaling exponent is in excellent agreement with the prediction of a scaling analysis for laminar, boundary layer-type flow in a low-Prandtl number fluid. Furthermore the experiments demonstrate that the Nusselt number and therefore the convective heat losses can be decreased by about 20% when a magnetic field of moderate strength ( B=0.1 T) is present. The numerical simulations solve the Boussinesq equations in an axisymmetric geometry using a finite element method. The results of the simulations are both quantitatively and qualitatively in good agreement with the experimental observations. Deviations are attributed to the three-dimensional characteristics of the flow.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have