Abstract

This work presents a boundary-layer analysis about the natural convection heat and mass transfer near a vertical truncated cone with variable wall temperature and concentration in a porous medium saturated with non-Newtonian power-law fluids. A coordinate transform is used to obtain the nonsimilar governing equations, and the transformed boundary-layer equations are solved by the cubic spline collocation method. Results for local Nusselt numbers are presented as functions of power-law indexes, surface temperature and concentration exponents, buoyancy ratios, and Lewis numbers. The heat and mass transfer rates of the truncated cones with higher surface temperature and concentration exponents are higher than those with lower exponents. Moreover, an increase in the power-law index of fluids tends to decrease the heat and mass transfer from a vertical truncated cone in a porous medium saturated with non-Newtonian power-law fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call