Abstract
This work examines the natural convection heat and mass transfer near a sphere with constant wall temperature and concentration in a micropolar fluid. A coordinate transformation is used to transform the governing equations into nondimensional nonsimilar boundary layer equations and the obtained boundary layer equations are then solved by the cubic spline collocation method. Results for the local Nusselt number and the local Sherwood number are presented as functions of the vortex viscosity parameter, Schmidt number, buoyancy ratio, and Prandtl number. For micropolar fluids, higher viscosity tends to retard the flow and thus decreases the natural convection heat and mass transfer rates from the sphere with constant wall temperature and concentration. Moreover, the natural convection heat and mass transfer rates from a sphere in Newtonian fluids are higher than those in micropolar fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.