Abstract
An emplaced source of coal tar creosote within the sandy Borden research aquifer has documented the long-term (5140 days) natural attenuation for this complex mixture. Plumes of dissolved chemicals were produced by the essentially horizontal groundwater flowing at about 9 cm/day. Eleven chemicals have been extensively sampled seven times using a monitoring network of ∼ 280, 14-point multilevel samplers. A model of source dissolution using Raoult's Law adequately predicted the dissolution of 9 of 11 compounds. Mass transformation has limited the extent of the plumes as groundwater has flowed more than 500 m, yet the plumes are no longer than 50 m. Phenol and xylenes have been removed and naphthalene has attenuated from its maximum extent on day 1357. Some compound plumes have reached an apparent steady state and the plumes of other compounds (dibenzofuran and phenanthrene) are expected to continue to expand due to an increasing mass flux and limited degradation potential. Biotransformation is the major process controlling natural attenuation at the site. The greatest organic mass lost is associated with the high solubility compounds. However, the majority of the mass loss for most compounds has occurred in the source zone. Oxygen is the main electron acceptor, yet the amount of organics lost cannot be accounted for by aerobic mineralization or partial mineralization alone. The complex evolution of these plumes has been well documented but understanding the controlling biotransformation processes is still elusive. This study has shown that anticipating bioattenuation patterns should only be considered at the broadest scale. Generally, the greatest mass loss is associated with those compounds that have a high solubility and low partitioning coefficients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have