Abstract

Natural antioxidants are a very large diversified family of molecules classified by activity (enzymatic or nonenzymatic), chemical-physical properties (e.g., hydrophilic or lipophilic), and chemical structure (e.g., vitamins, polyphenols, etc.). Research on natural antioxidants in various fields, such as pharmaceutics, nutraceutics, and cosmetics, is among the biggest challenges for industry and science. From a biomedical point of view, the scavenging activity of reactive oxygen species (ROS) makes them a potential tool for the treatment of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, dementia, and amyotrophic lateral sclerosis (ALS). In addition to the purified phytochemical compounds, a variety of natural extracts characterized by a complex mixture of antioxidants and anti-inflammatory molecules have been successfully exploited to rescue preclinical models of these diseases. Extracts derived from Ginkgo biloba, grape, oregano, curcumin, tea, and ginseng show multitherapeutic effects by synergically acting on different biochemical pathways. Furthermore, the reduced toxicity associated with many of these compounds limits the occurrence of side effects. The support of nanotechnology for improving brain delivery, controlling release, and preventing rapid degradation and excretion of these compounds is of fundamental importance. This review reports on the most promising results obtained on in vitro systems, in vivo models, and in clinical trials, by exploiting natural-derived antioxidant compounds and extracts, in their free form or encapsulated in nanocarriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.