Abstract

BackgroundSignificant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa. During pretreatment, endogenous acetate hydrolyzes to acetic acid that can subsequently catalyze the breakdown of poplar wood, increasing the efficiency of biomass pretreatment.ResultsPoplar genotypes varying in cell wall composition were pretreated in 0.3% H2SO4 in non-isothermal batch reactors. Acetic acid released from the wood was positively related to sugar release during pretreatment (R ≥ 0.9), and inversely proportional to the lignin content of the poplar wood (R = 0.6).ConclusionThere is significant variation in wood chemistry among P. trichocarpa genotypes. This study elucidated patterns of cell wall deconstruction and clearly links carbohydrate solubilization to acetate release. Tailoring biomass feedstocks for acetate release could enhance pretreatment efficiencies.

Highlights

  • Significant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa

  • Comparing acetate and sugar release in different wood samples Having established the impact of acetic acid on poplar wood solubilization, we evaluated the impact of native acetate in 19 different poplar wood samples using the sulphuric acid-catalyzed pretreatment regime 7

  • The findings of the current study suggest that lignin and xylan interact, and that acetate content influences the interaction between these two major cell wall polymers

Read more

Summary

Introduction

Significant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa. Harsh pretreatment regimes are often required to separate the carbohydrates from lignin in the cell wall complex and provide sufficient accessibility for biochemical conversion. Some pretreatments, notably those using dilute acid processes, solubilize hemicelluloses into the reaction liquor, where they degrade or are discarded as a waste stream [5, 6]. The hemicelluloses, comprising up to 30% of the secondary cell wall of poplar [7], are an underutilized fraction of biomass Studies of their dissolution and degradation are required in order to improve estimates of product yield in the biorefinery process

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.