Abstract

Freshwaters are considered to be the most vulnerable ecosystems facing biological invasions, and the red swamp crayfish (Procambarus clarkii) is one of the most widespread aquatic invasive species in the world. P. clarkii has negative impacts on water quality in the lakes that it invades by, for instance, increasing their turbidity and nutrient concentrations and reducing macrophyte biomass. However, native taxa such as snails and mussels could potentially help to maintain a clear-water status in lakes by grazing on periphyton or by phytoplankton filtration. To examine the potential negative effects of P. clarkii on the clear-water state in lakes dominated by the macrophyte Vallisneria denseserrulata and the potential for native species to buffer these effects, we tested the crayfish impact in the absence and presence of the snail Bellamya aeruginosa and the mussel Sinanodonta woodiana at different biomasses. In the presence of crayfish, total suspended solids, total phosphorus, and chlorophyll a concentrations significantly increased compared to the control treatments without crayfish. However, when crayfish coexisted with snails or mussels, these three environmental variables all decreased in concentration compared to the crayfish-only treatment. Low (500 g/m2) and high (1500 g/m2) snail or mussel biomass had similar buffering effects. Macrophyte biomass in the crayfish and high mussel biomass treatment was 43 % higher than in the crayfish-only treatment. Native molluscs therefore alleviated the negative effects of crayfish on lake water quality and promoted native macrophyte growth. We conclude that a thriving native mollusc community may help in maintaining the clear-water state in lakes following crayfish invasion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call