Abstract

We carried out a comprehensive study of native gold (morphology, composition, intergrowths, and microinclusions) from alluvial deposits of the Kamenny stream (Ozerninsky ore cluster, Western Transbaikalia, Russia). The study showed that there were four types of native gold, which differed significantly in their characteristics and probably had different primary sources from which placers were formed: gold–quartz, oxidized gold–sulfide, gold–silver, and zones of listvenites with copper–gold and gold–brannerite (Elkon-type). Particular attention was paid to the study of unique, both in size and in composition, gold–brannerite nuggets of the Kamenny stream. It was established that the gold in the gold–brannerite nuggets (GBNs) had wide variations in chemical composition and mineral features. According to them, there were five different fineness types of native gold: 750–800‰; 850–880‰; 880–920‰; 930–960‰; and 980–1000‰. The data obtained indicated a multistage, possibly polygenic, and probably polychronous formation of GBN gold–uranium mineralization. The first stage was the formation of early quartz–nasturanium–gold–W–rutile–magnetite association (Middle–Late Paleozoic age). The second was the crystallization of brannerite and the replacement of an earlier pitchblende with brannerite (Late Triassic (T3)–Early Jurassic (J1) age). The third was the formation of the hematite–barite–rutile–gold association as a result of deformation–hydrothermal processes, which was associated with the appearance of zones of alteration in brannerite in contact with native gold with 8–15 wt.% Ag. The fourth was hypergene or the low-temperature hydrothermal alteration of minerals of early stages with the development of iron hydroxides (goethite) with impurities of manganese, tellurium, arsenic, phosphorus, and other elements. The carbon isotopic composition of an organic substance indicates the involvement of a biogenic carbon source. In the OOC area, there were signs that the composition of the GBNs and the quartz–chlorite–K–feldspar-containing rocks corresponded to Elkon-type deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call