Abstract

The room temperature hole conductivity of the ultra-wide bandgap semiconductor β-Ga2O3 is a pre-requisite for developing the next-generation electronic and optoelectronic devices based on this oxide. In this work, high-quality p-type β-Ga2O3 thin films grown on r-plane sapphire substrate by metalorganic chemical vapor deposition (MOCVD) exhibit ρ = 5 × 104 Ω·cm resistivity at room temperature. A low activation energy of conductivity as Ea2 = 170 ± 2 meV was determined, associated to the VO++−VGa−native acceptor defect complex. Further, taking advantage of cation (Zn) doping, the conductivity of Ga2O3:Zn film was remarkably increased by three orders of magnitude, showing a long-time stable room-temperature hole conductivity with the conductivity activation energy of around 86 meV. VO++−ZnGa− defect complex has been proposed as a corresponding shallow acceptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call