Abstract
The Nash multiplicity sequence was defined by M. Lejeune-Jalabert as a non-increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface. M. Hickel generalized this notion and described a sequence of blow ups which allows us to compute it and study its behavior. In this paper, we show how this sequence can be used to compute some invariants that appear in algorithmic resolution of singularities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have