Abstract
In this article, we consider a Nash equilibrium seeking problem for a class of high-order multiagent systems with unknown dynamics. Different from existing results for single integrators, we aim to steer the outputs of this class of uncertain high-order agents to the Nash equilibrium of some noncooperative game in a distributed manner. To overcome the difficulties brought by the high-order structure, unknown nonlinearities, and the regulation requirement, we first introduce a virtual player for each agent and solve an auxiliary noncooperative game for them. Then, we develop a distributed adaptive protocol by embedding this auxiliary game dynamics into some proper tracking controller for the original agent to resolve this problem. We also discuss the parameter convergence issue under certain persistence of excitation conditions. The efficacy of our algorithms is verified by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.