Abstract

BackgroundStaphylococcus epidermidis is one of the most abundant colonizers of healthy human mucosa including that in the respiratory tract. As the respiratory microbiome has been linked to host immune responses, this study sought to determine the role of nasal mucosa-associated S. epidermidis in innate immune responses against the influenza A virus (IAV). S. epidermidis strains were isolated from nasal mucus samples of healthy individuals. The effects of these mucosa-derived commensal strains on interferon (IFN)-dependent innate immunity and IAV infection dynamics were tested in vitro using normal human nasal epithelial (NHNE) cells and human turbinate mucosa. The effects of S. epidermidis on antiviral immunity were also tested in vivo using an acute IAV infection mouse model.ResultsExposure of NHNE cells to nasal mucosa-derived S. epidermidis increased IFN-λ mRNA and secreted protein levels in the absence of viral stimulation. In the context of IAV infection, NHNE exposure to S. epidermidis prevented an increase in the viral burden, as revealed by IAV PA mRNA abundance, IAV nucleoprotein levels, and viral titers. S. epidermidis also enhanced transcription of IFN-stimulated genes independently of Toll-like receptor 2 and further induced IFN-λ production in IAV-infected cells by promoting phosphorylation of interferon regulatory factor 7. In a murine infection model, S. epidermidis prevented the spread of IAV to the lungs by stimulating IFN-λ innate immunity and suppressing IAV replication in the nasal mucosa.ConclusionThe human nasal commensal S. epidermidis mediates front-line antiviral protection against IAV infection through modulation of IFN-λ-dependent innate immune mechanisms in the nasal mucosa, thereby demonstrating the role of host-bacterial commensalism in shaping human antiviral responses.

Highlights

  • Staphylococcus epidermidis is one of the most abundant colonizers of healthy human mucosa including that in the respiratory tract

  • S. epidermidis abundance and IFN-λ expression are positively correlated in human nasal mucosa Considering the in vitro effect of nasal commensal S. epidermidis strains on IFN expression and influenza A virus (IAV) infection, we investigated the relationship between S. epidermidis abundance and IFN-λ mRNA levels

  • Our study revealed that S. epidermidis is the most abundant microbiome that colonizes healthy human nasal mucus and the distribution of S. epidermidis might be significantly associated with IFN-λ-dependent innate immune responses in the nasal mucosa

Read more

Summary

Introduction

Staphylococcus epidermidis is one of the most abundant colonizers of healthy human mucosa including that in the respiratory tract. S. epidermidis strains were isolated from nasal mucus samples of healthy individuals The effects of these mucosa-derived commensal strains on interferon (IFN)-dependent innate immunity and IAV infection dynamics were tested in vitro using normal human nasal epithelial (NHNE) cells and human turbinate mucosa. Respiratory mucosa, including that of nasal passages, is constantly exposed to inhaled pathogens, which directly impact the mucosal immune mechanisms [9, 10]. Inhaled pathogens encounter the host immune system for the first time in respiratory mucosa; especially, the nasal passage and microbial characteristics of the nasal mucus directly impact the mechanisms of initial immune responses [11,12,13,14]. Our knowledge of microbial composition in healthy nasal mucus is limited and the responses to inhaled pathogens or reasons for their colonization have not been comprehensively examined

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call