Abstract

Narrowband ultraviolet-B (NB-UVB) luminescent materials are characterized by high photon energy, narrow spectral width, and visible-blind emission, thus holding great promise for photochemistry and photomedicine. However, most NB-UVB phosphors developed so far are photoluminescent, where continuous external excitation is needed. Herein, we realize NB-UVB persistent luminescence (PersL) in an indoor-lighting environment by exploiting the interaction between self-trapped/defect-trapped excitons and Gd3+ emitters in ScPO4. The phosphor shows a self-luminescing feature with a peak maximum at 313 nm with a time duration of >24 h after ceasing X-ray irradiation, which can be clearly imaged by an UVB camera in a bright environment. Spectroscopic and theoretical approaches reveal that thermo- and photo-stimulations of energies trapped at intrinsic lattice defects followed by energy transfer to Gd3+ emitters account for the emergence of the afterglow. The present results can initiate more exploration of NB-UVB PersL phosphors for emerging applications in secret optical tagging and phototherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.