Abstract
Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP. Phosphors show narrowband phosphorescence with full width at half maxima (FWHM) of 30 nm after doping into a rigid benzophenone matrix under ambient conditions, of which the RTP efficiency reaches 51.8%. At 77 K, the FWHM of phosphorescence is only 11 nm. Meanwhile, the colour of narrowband RTP can be tuned from sky blue to green with the modification of methyl groups. Additionally, the potential applications in X-ray imaging and display are demonstrated. This work not only outlines a design principle for developing narrowband RTP materials but also makes a major step forward extending the potential applications of narrowband luminescent materials in optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.