Abstract

Boron-doped helicenes, known for their unique electronic and photophysical properties, are of great interest for numerous applications. This research introduces two new azabora[6]helicenes, H[6]BN1 and H[6]BN2, synthesized through an efficient method. These molecules have boron and nitrogen atoms in opposing positions, enhancing their distinctive attributes. Both helicenes show excellent emission properties, with H[6]BN1 and H[6]BN2 exhibiting narrowband blue fluorescence and circularly polarized luminescence (CPL), achieving glum values of 4~5 ×10-4 which is beneficial for chiroptical applications. The addition of a donor group, 3, 6-di-tert-butyl-9H-carbazole, in H[6]BN2 improves luminescence, likely due to enhanced molecular orbital overlap and electron delocalization. H[6]BN1's needle-like single crystals exhibit mechanochromism, changing luminescent color from yellow to green under mechanical stress, which is promising for stimulus-responsive materials. In conclusion, this study presents a novel class of BN[6]helicenes with superior chiroptical properties. Their combination of electronic features and mechanochromism makes them ideal for advanced chiroptical materials, expanding the potential of helicene-based compounds and offering new directions for the synthesis of molecules with specific chiroptical characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call