Abstract

Narrow-linewidth lasers have a high spectral purity, long coherent length, and low phase noise, so they have important applications in atomic clocks, precision measurement, and quantum computing. We inject a transmitted laser from a narrow-linewidth (∼15 kHz) flat-concave Fabry–Perot (F-P) cavity made from ultra-low expansion (ULE) optical glass into an 852 nm distributed Bragg reflector-type laser diode (DBR-LD), of which the comprehensive linewidth is 1.67 MHz for the free running case. With an increase in the self-injection power, the laser linewidth gradually narrows, and the injection locking current range gradually increases. The narrowest linewidth measured by the delayed frequency-shifted self-heterodyne (DFSSH) method is about 365 Hz, which is about 1/4500 of the linewidth for the free running case. Moreover, to characterize the laser phase noise, we use a detuned F-P cavity to measure the conversion signal from the laser phase noise to the intensity noise for both the free running case and the self-injection lock case. The laser phase noise for the self-injection lock case is significantly suppressed in the analysis frequency range of 0.1–10 MHz compared to the free running case. In particular, the phase noise is suppressed by more than 30 dB at an analysis frequency of 100 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.