Abstract

The presence of laser phase noise (or frequency jitter) limits the resolution of a variety of interferometric sensors ranging from fiber optic acoustic sensors to gravitational wave detectors. At low frequencies, 0 to 100 kHz, the laser phase noise in semiconductor and diode pumped solid-state lasers is dominated by 1/f noise, the source of which is not well understood. We report on phase noise measurements for external cavity semiconductor lasers (ECSLs) utilizing a fiber Bragg grating in a compact butterfly package design produced by K2 Optronics. The results show that the phase noise is dominated by 1/f noise for low frequencies (10 to 100 kHz) transitioning to a white noise due to spontaneous emission for f > 100 kHz. We observed a factor of 40 improvement in the magnitude of the 1/f phase noise as compared to previously published results for a Hitachi HLP 1400 830 nm diode laser. The magnitude of the low frequency phase noise ranges from 100 to 10 microradians per meter per root Hz for frequencies ranging from 10 Hz to 2 kHz. These results are within a factor of 10 for phase noise measurements of the more expensive Lightwave Electronics Nd:YAG laser and a variety of Er-doped fiber lasers in this frequency range. For nominally similar ECSLs, experimental results indicate that the phase noise increases for lasers with larger leakage currents. Linewidth measurement results showed a Schawlow-Townes inverse power dependence for output powers up to 33 mWatts with the observed onset of a linewidth floor of 30 kHz. The RIN of the ECSLs varied from -120 to -155 dB Vrms per root Hz for frequencies ranging from 10 to 500 kHz. These RIN results are roughly equal to those observed for the Nd:YAG laser for frequencies less that 100 kHz. In summary, such low phase noise and RIN results make such ECSLs suitable for all but the most sensitive fiber optic sensing applications where the frequency range of interest is below 1 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.