Abstract
BackgroundMotor impairments in those with isolated REM sleep behaviour disorder (iRBD) significantly increases the likelihood of developing Lewy body disease (e.g. Parkinson’s disease and Dementia with Lewy Bodies). ObjectiveThis study sought to explore the prodromal process of neurodegeneration by examining the neural signature underlying motor deficits in iRBD patients. MethodsA virtual reality (VR) gait paradigm (which has previously been shown to elicit adaptive changes in gait performance whilst navigating doorways in Parkinson’s Disease - PD) was paired with fMRI to investigate whether iRBD patients demonstrated worsened motor performance and altered connectivity across frontoparietal, motor and basal ganglia networks compared to healthy controls. Forty participants (23 iRBD and 17 healthy controls) completed the virtual reality gait task whilst in the MRI scanner, and an additional cohort of 19 Early PD patients completed the behavioural virtual reality gait task. ResultsAs predicted, iRBD patients demonstrated slower and more variable stepping compared to healthy control participants and demonstrated an exaggerated response when navigating narrow compared to wide doorways, a phenomenon characteristically seen in PD. The iRBD patients also demonstrated less BOLD signal change in the left posterior putamen and right mesencephalic locomotor region, as well as reduced functional connectivity between the frontoparietal network and the motor network, when navigating narrow versus wide doorways compared to healthy control participants. ConclusionsTaken together, this study demonstrates that iRBD patients have altered task-related brain connectivity, which may represent the neural underpinnings of early motor impairments that are evident in iRBD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.