Abstract
The pursuit of optoelectronic devices operating in the mid-infrared regime is driven by both fundamental interests and envisioned applications ranging from imaging, sensing to communications. Despite continued achievements in traditional semiconductors, notorious obstacles such as the complicated growth processes and cryogenic operation preclude the usage of infrared detectors. As an alternative path towards high-performance photodetectors, hybrid semiconductor/graphene structures have been intensively explored. However, the operation bandwidth of such photodetectors has been limited to visible and near-infrared regimes. Here we demonstrate a mid-infrared hybrid photodetector enabled by coupling graphene with a narrow bandgap semiconductor, Ti2O3 (Eg = 0.09 eV), which achieves a high responsivity of 300 A W−1 in a broadband wavelength range up to 10 µm. The obtained responsivity is about two orders of magnitude higher than that of the commercial mid-infrared photodetectors. Our work opens a route towards achieving high-performance optoelectronics operating in the mid-infrared regime.
Highlights
The pursuit of optoelectronic devices operating in the mid-infrared regime is driven by both fundamental interests and envisioned applications ranging from imaging, sensing to communications
It still remains as a challenge to realize high performance long-wavelength infrared (LWIR) photodetection with the conventional narrow-bandgap semiconductors such as mercury cadmium telluride (HgCdTe) thin films, indium antimonide (InSb) and artificial semiconductor superlattices via inter/intraband transitions[4]
The working mechanism is as follows: when the incident light is absorbed by the Ti2O3 nanoparticles, the photo-excited electrons are trapped in the Ti2O3 nanoparticles, while the holes are transferred into the graphene channel, leading to a conspicuous photocurrent measured in a field effect transistor configuration
Summary
The pursuit of optoelectronic devices operating in the mid-infrared regime is driven by both fundamental interests and envisioned applications ranging from imaging, sensing to communications. We demonstrate a mid-infrared hybrid photodetector enabled by coupling graphene with a narrow bandgap semiconductor, Ti2O3 (Eg = 0.09 eV), which achieves a high responsivity of 300 A W−1 in a broadband wavelength range up to 10 μm. Ultrahigh optical gain was achieved in hybrid graphene-CQD structures, where graphene serves as the ultrahigh speed carrier transport channel and CQD serves as light absorber with high absorption efficiency[16,17]. The operation wavelength of such hybrid photodetectors are limited in the visible and the near-infrared regimes owing to the relatively large intrinsic bandgap of the light absorbers[9]. We demonstrate room-temperature mid-infrared photodetectors with high responsivity, detectivity and high speed, realized by hybridizing graphene with a novel narrow bandgap semiconductor, titanium sesquioxide (Ti2O3) nanoparticles. The broadband mid-infrared operation bandwidth, high responsivity and detectivity make the graphene/Ti2O3 a promising candidate for mid-infrared photodetection, providing a novel paradigm for mid-infrared photonics and optoelectronics
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have