Abstract
Cardiovascular disease consistently occupies a prominent position among the leading global causes of mortality. Continuous and real-time monitoring of cardiovascular signs over an extended duration is necessary to identify irregularities and prompt timely intervention. Due to this reason, researchers have invested heavily in developing adaptive sensors that may be worn or implanted and continuously monitor numerous vital physiological characteristics. Mechanical sensors represent a category of devices capable of precisely capturing the temporal variations in pressure within the heart and arteries. Mechanical sensors possess inherent advantages such as exceptional precision and a wide range of adaptability. This article examines four distinct mechanical sensor technologies that rely on capacitive, piezoresistive, piezoelectric, and triboelectric principles. These technologies show great potential as novel approaches for monitoring the cardiovascular system. The subsequent section provides a comprehensive analysis of the biomechanical components of the cardiovascular system, accompanied by an in-depth examination of the methods employed to monitor these intricate systems. These systems measure blood and endocardial pressure, pulse wave, and heart rhythm. Finally, we discuss the potential benefits of continuing health monitoring in vascular disease treatment and the challenges of integrating it into clinical settings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have