Abstract

Naringenin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative properties and the ability to induce apoptosis in hepatoma cell lines. However, there are no reports describing its effects on the invasion and metastasis of hepatoma cell lines, and the detailed molecular mechanisms of its effects are still unclear. In this study, we investigated the mechanisms underlying naringenin-mediated inhibition of 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion and inhibition of secreted and cytosolic MMP-9 production in human hepatoma cells (HepG2, Huh-7, and HA22T) and murine embryonic liver cells (BNL CL2). Naringenin suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-κB (NF-κB) activity. It suppressed TPA-induced AP-1 activity through inhibiting the phosphorylation of the extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways, and it suppressed TPA-induced inhibition of NF-κB nuclear translocation through IκB. Additionally, it suppressed TPA-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-κB and AP-1. These data suggest that naringenin suppresses the invasiveness and metastatic potential of hepatocellular carcinoma (HCC) by inhibiting multiple signal transduction pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.