Abstract

BackgroundTargeting the TGF-β1 pathway for breast cancer metastasis therapy has become an attractive strategy. We have previously demonstrated that naringenin significantly reduced TGF-β1 levels in bleomycin-induced lung fibrosis and effectively prevented pulmonary metastases of tumors. This raised the question of whether naringenin can block TGF-β1 secretion from breast cancer cells and inhibit their pulmonary metastasis.MethodsWe transduced a lentiviral vector encoding the mouse Tgf-β1 gene into mouse breast carcinoma (4T1-Luc2) cells and inoculated the transformant cells (4T1/TGF-β1) into the fourth primary fat pat of Balb/c mice. Pulmonary metastases derived from the primary tumors were monitored using bioluminescent imaging. Spleens, lungs and serum (n = 18–20 per treatment group) were analyzed for immune cell activity and TGF-β1 level. The mechanism whereby naringenin decreases TGF-β1 secretion from breast cancer cells was investigated at different levels, including Tgf-β1 transcription, mRNA stability, translation, and extracellular release.ResultsIn contrast to the null-vector control (4T1/RFP) tumors, extensive pulmonary metastases derived from 4T1/TGF-β1 tumors were observed. Administration of the TGF-β1 blocking antibody 1D11 or naringenin showed an inhibition of pulmonary metastasis for both 4T1/TGF-β1 tumors and 4T1/RFP tumors, resulting in increased survival of the mice. Compared with 4T1/RFP bearing mice, systemic immunosuppression in 4T1/TGF-β1 bearing mice was observed, represented by a higher proportion of regulatory T cells and myeloid-derived suppressor cells and a lower proportion of activated T cells and INFγ expression in CD8+ T cells. These metrics were improved by administration of 1D11 or naringenin. However, compared with 1D11, which neutralized secreted TGF-β1 but did not affect intracellular TGF-β1 levels, naringenin reduced the secretion of TGF-β1 from the cells, leading to an accumulation of intracellular TGF-β1. Further experiments revealed that naringenin had no effect on Tgf-β1 transcription, mRNA decay or protein translation, but prevented TGF-β1 transport from the trans-Golgi network by inhibiting PKC activity.ConclusionsNaringenin blocks TGF-β1 trafficking from the trans-Golgi network by suppressing PKC activity, resulting in a reduction of TGF-β1 secretion from breast cancer cells. This finding suggests that naringenin may be an attractive therapeutic candidate for TGF-β1 related diseases.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0698-0) contains supplementary material, which is available to authorized users.

Highlights

  • Targeting the transforming growth factor (TGF)-β1 pathway for breast cancer metastasis therapy has become an attractive strategy

  • Secreted TGF-β1 promotes metastasis via transforming T cells to regulatory T cells (Tregs), which facilitates the escape of cancer cells from host immune responses [8], and/or by inducing cancer cells to undergo epithelial to mesenchymal transition (EMT) [9]

  • TGF-β1 overproduction in 4T1 tumor cells promotes pulmonary metastasis To investigate the role of TGF-β1 overexpression in 4T1 cells in pulmonary metastasis, we constructed a lentiviral vector that expressed a hybrid construct containing human growth hormone signal sequence and murine Tgf-β1, which enabled the transduced cells to secrete mature TGF-β1 (4T1/TGF-β1)

Read more

Summary

Introduction

Targeting the TGF-β1 pathway for breast cancer metastasis therapy has become an attractive strategy. We have previously demonstrated that naringenin significantly reduced TGF-β1 levels in bleomycin-induced lung fibrosis and effectively prevented pulmonary metastases of tumors. This raised the question of whether naringenin can block TGF-β1 secretion from breast cancer cells and inhibit their pulmonary metastasis. An association between elevated cellular and plasma transforming growth factor (TGF)-β1 levels and increased breast cancer metastasis has been reported previously [3,4,5,6,7]. The proliferation of cancer cells increases TGF-β1 secretion, leading to a more metastatic phenotype [10]. Tregs constitutively express Foxp, which is the master regulator that mediates the immunosuppressive function of Tregs [14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call