Abstract
AbstractBreast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor+ and triple-negative (TNBC) human and mouse BCa cells. Furthermore, a critical role for exosomes derived from cells subjected to mechanical strain in these pro-tumorigenic effects was identified. Exosome production by TNBC cells increased upon exposure to oscillatory strain (OS), which correlated with elevated cell proliferation. Using a syngeneic, orthotopic mouse model of TNBC, we identified that preconditioning BCa cells with OS significantly increased tumor growth and myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the TME. This pro-tumorigenic myeloid cell enrichment also correlated with a decrease in CD8+ T cells. An increase in PD-L1+ exosome release from BCa cells following OS supported additive T cell inhibitory functions in the TME. The role of exosomes in MDSC and M2 macrophage was confirmed in vivo by cytotracking fluorescent exosomes, derived from labeled 4T1.2 cells, preconditioned with OS. In addition, in vivo internalization and intratumoral localization of tumor-cell derived exosomes was observed within MDSCs, M2 macrophages, and CD45-negative cell populations following direct injection of fluorescently-labeled exosomes. Our data demonstrate that exposure to mechanical strain promotes invasive and pro-tumorigenic phenotypes in BCa cells, indicating that mechanical strain can impact the growth and proliferation of cancer cell, alter exosome production by BCa, and induce immunosuppression in the TME by dampening anti-tumor immunity.The authors demonstrate that mechanical strain enhances proliferation and migration of breast cancer (BCa) cells. Oscillatory strain (OS)-exposed triple negative breast cancer cells produced more exosomes with immunomodulatory potential. Preconditioning BCa cells with OS before transplantation in vivo increased tumor growth, infiltration of immunesuppressive myeloid-lineage cells, and enhanced exosome-mediated cellular cross-talk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.