Abstract
For a bounded domain , let denote the Bergman kernel on the diagonal and consider the reproducing kernel Hilbert space of holomorphic functions on D that are square integrable with respect to the weight , where is an integer. The corresponding weighted kernel transforms appropriately under biholomorphisms and hence produces an invariant Kähler metric on D. Thus, there is a hierarchy of such metrics starting with the classical Bergman metric that corresponds to the case d = 0. This note is an attempt to study this class of metrics in much the same way as the Bergman metric has been with a view towards identifying properties that are common to this family. When D is strongly pseudoconvex, the scaling principle is used to obtain the boundary asymptotics of these metrics and several invariants associated with them. It turns out that all these metrics are complete on strongly pseudoconvex domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.