Abstract
Recent studies show that carbonaceous materials have gained interest because of their superior features over the alternative adsorbents. Therefore, it is of great value to synthesize novel carbonaceous adsorbents. In the present study, graphene oxide nanopowders (GON) were synthesized through a modified Hummer’s method. The material has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) methods. Naproxen has been selected as the model pharmaceutical to investigate the adsorption performance of GON. The highest adsorption removal was found to be 65.28% under the optimum conditions (0.03 g of GON for the adsorption of 10 mg/L naproxen solution at 100 rpm mixing the speed of shaking bath). The relevant adsorption system was an exothermic, spontaneous, and chemisorption process depending on the kinetic (pseudo-first order, pseudo-second order, intraparticular, and Elovich models), equilibrium (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkin-Jura, and Halsey isotherm equations), and thermodynamic parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.