Abstract

Dopants modify the electronic properties of semiconductors, including their susceptibility to etching. In semiconductor nanowires doped during growth by the vapor-liquid-solid (VLS) process, it has been shown that nanofaceting of the liquid-solid growth interface influences strongly the radial distribution of dopants. Hence, the combination of facet-dependent doping and dopant selective etching provides a means to tune simultaneously the electronic properties and morphologies of nanowires. Using atom-probe tomography, we investigated the boron dopant distribution in Au catalyzed VLS grown silicon nanowires, which regularly kink between equivalent ⟨112⟩ directions. Segments alternate between radially uniform and nonuniform doping profiles, which we attribute to switching between a concave and convex faceted liquid-solid interface. Dopant selective etching was used to reveal and correlate the shape of the growth interface with the observed anisotropic doping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call