Abstract

Health issues induced by mosquito illnesses highlight the need for effective control. Here, we developed an efficient carbon-dot-silver nanohybrid to control Anopheles stephensi and Culex quinquefasciatus mosquito species. The nanohybrid was synthesized using a thermal method without addition of any toxic-reducing agent. Monohybrids are found within the ranges of 2–6 nm for carbon-dot and 10–35 nm for silver nanoparticles with uniform distribution. The uniformly dispersed nanohybrid solutions show excellent larvicidal activity within the concentration range of 0.5–1.0 ppm. Morphological studies evidence the presence of strong bonds between nanohybrid and sulphur- or phosphorus-containing compounds such as proteins and DNA present in the larval body. This explains tissue damage at very low concentrations of nanohybrid. Therefore, this nanoweapon has high potential for field applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.