Abstract

Hepatocellular carcinoma (HCC) microenvironment has been recognized as a key contributor for cancer progression, metastasis, and drug resistance. The crosstalk between tumor cells, the vascular endothelial growth factor (VEGF), and the chemokine (C-C motif) ligand 2 (CCL2) signaling networks mediates immunoinhibitory impact and facilitates tumor angiogenesis. The current investigation aimed at exploring the potent anti-cancer activity of the newly designed nano-based anti-cancer therapy comprising anti-VEGF drug, avastin (AV), and CCR2 antagonist (CR) to counteract HCC and tracking its mode of action in vivo. The prepared AV, CR, and AVCR nanoprototypes were characterized by nanoscale characterization techniques in our previous work. Here, they are applied for unearthing their anti-cancer properties / mechanisms in hepatic cancer-induced rats via analyzing protein levels and genetic expression of the elements incorporated in the angiogenesis, apoptosis, and metastasis signalling pathways. The present results revealed a significant down-regulation in the angiogenesis, survival and metastasis indices along with up-regulation in the pro-apoptotic mediators upon treatment of hepatic cancer-bearing rats with the novel synthesized nanomaterials when compared with the untreated counterparts. We showed across HCC model that anti-VEGF in combination with CCR2 antagonism therapy leads to sensitization and enhanced tumor response over anti-VEGF or CCR2 antagonism monotherapy, particularly in its nanoscale formulation. The present approach provides new mechanistic insights into the powerful anti-hepatic cancer advantage of the novel nanoprototypes which is correlated with modulating critical signal transduction pathways implicated in tumor microenviroment such as angiogenesis, apoptosis and metastasis. This research work presents a substantial foundation for future studies focused on prohibiting cancer progression and recovery by targeting tumor microenviroment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call