Abstract

It is commonly known that agricultural pest and disease management is achieved through the use of agricultural chemicals and other synthetic compounds, which can contaminate water, soil, and food. Using agrochemicals indiscriminately has negative effects on the environment and poor food quality. In contrast, the world's population is increasing rapidly, and arable land is diminishing daily. Traditional agricultural methods must be replaced by nanotechnology-based treatments that efficiently address both the demands of the present and the needs of the future. As a promising contributor to sustainable agriculture and food production worldwide, nanotechnology has been applied through innovative and resourceful tools. Recent advances in nanomaterial engineering have increased agricultural and food sector production and protected crops using nanoparticles (1000 nm). Agrochemicals, nutrients, and genes can now be distributed to plants in a precise and tailored manner through nanoencapsulation (nanofertilizers, nanopesticides, and genes). Despite the advancement of technology in agriculture, some areas remain unexplored. The various agricultural domains must therefore be updated in priority order. The development of long-lasting and efficient nanoparticle materials will be key to the development of future eco-friendly and nanoparticle-based technologies. We thoroughly covered the many types of nanoscale agro-materials and gave an overview of biological techniques in nano-enabled tactics that can effectively reduce plant biotic and abiotic challenges while potentially boosting plant nutritional values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call