Abstract

The development of a method for efficiently harvesting energy from the human body could enable extraordinary advances in biomedical devices and portable electronics. Being electromechanically coupled, nanopiezoelectrics represent a promising new materials paradigm for scavenging otherwise wasted energy, with the ultimate goal of replacing or augmenting batteries. Of particular interest is developing biomechanical energy nanogenerators that are highly efficient, but with flexible form factors for wearable or implantable applications. This perspective presents an overview of the opportunities, progresses, and challenges in the rapidly accelerating field of nanopiezoelectrics. The combination of new nanomaterial properties, novel assembly strategies, and breakthrough device performance metrics suggests a rich platform for a host of exciting avenues in fundamental research and novel applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.