Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call