Abstract

A new kind of fluorescent organic nanoparticles (FONs) is obtained using quatsomes (QSs), a family of nanovesicles proposed as scaffolds for the nanostructuration of commercial lipophilic carbocyanines (1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI), 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indodicarbocyanine perchlorate (DiD), and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indotricarbocyanine iodide (DiR)) in aqueous media. The obtained FONs, prepared by a CO2 -based technology, show excellent colloidal- and photostability, outperforming other nanoformulations of the dyes, and improve the optical properties of the fluorophores in water. Molecular dynamics simulations provide an atomistic picture of the disposition of the dyes within the membrane. The potential of QSs for biological imaging is demonstrated by performing superresolution microscopy of the DiI-loaded vesicles in vitro and in cells. Therefore, fluorescent QSs constitute an appealing nanomaterial for bioimaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.