Abstract

Titanium dioxide (TiO2), with its large band gap, has attracted much attention due to its excellent photocatalytic activity. TiO2 ball-shaped nano-particles were deposited on silicon substrates by a thermal oxidation approach. With an increase in the annealing temperature the surface morphology and the structure of TiO2 remained stable, exhibiting good heat stability; meanwhile, the hydrogen production rate also increased. The femtosecond pump-probe spectroscopic study showed that the lifetime of carriers of the samples as- deposited and post-annealed at different temperatures were longer than 20 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.