Abstract

In the present work, chitosan (CHI) and elastin-like recombinamers (ELRs) were used to conceive nanostructured thin films driven by sequential electrostatic layer-by-layer (LbL), a simple and versatile technique that discards the use of harmful reagents. Two similar ELRs were engineered to contain negatively charged aminoacids and organized and a single monoblock or a triblock. The buildup of the films was monitored in real time using a quartz-crystal microbalance with dissipation monitoring (QCM-D). Wettability transitions were observed from a moderate hydrophobic surface to an extremely wettable upon increasing the temperature to 50 °C, accompanied by topography changes at the nanoscale as assessed by atomic force microscopy (AFM). Furthermore, the dependence on time for the surface molecular rearrangement was studied for the films with each ELR. The potential of this technology may stimulate the development of devices and biomaterials for biomedical applications in the near future, such as surfaces with tunable and patterned cell adhesion, while the use of ELRs will allow developing polypeptides with biological significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call