Abstract

Cost-effective, simple, and easily reproducible synthesis methods of polymers are of profound significance when it comes to extracting high battery performance metrics from polymeric redox-active materials. This work reports a procedure for the solvothermal synthesis of a poly(hydroquinonyl-benzoquinonyl sulfide) (PHBQS) polymer and the development of its nanostructured composites with multiwalled carbon nanotubes (MWCNTs). Polymers are tested as high-performance cathode materials for Li+ and Mg2+ batteries. In configurations, compared to neat PHBQS, the PHBQS@5%MWCNT cathode exhibits superior electrochemical performance with high active material utilization owing to improved ion/electron transport pathways. Galvanostatic characterization of the PHBQS@5%MWCNT cathode in lithium batteries exhibited peak capacity up to 358 mAh g–1 at a current density of 50 mA g–1 (C/8) and excellent rate performance with a discharge capacity of 236 mAh g–1 maintained even at high current density of 10C. The galvanostatic characterization in Mg batteries reveals more sluggish kinetics with a stable capacity of 200 mAh g–1 at 50 mA g–1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call