Abstract

Nitrofurantoin (NFT) is mainly used in humans for the treatment of urinary tract infections. NFT is used as feed additives in animals, due to its broad antimicrobial activity. However, it shows more side effects on human health and the environment. Therefore low-cost, portable, and rapid sensors are necessary for the detection of NFT in real samples. Herein, we successfully developed an electrochemical sensor using a glassy carbon electrode (GCE) modified with gadolinium orthoferrite (GdFeO3) decorated on reduced graphene oxide (RGO) nanocomposite for the detection of NFT. The facile hydrothermal method was used to synthesis a novel GdFeO3/RGO nanocomposite, the morphological and structural characterization was confirmed by the FESEM, HRTEM, EDX, XRD, Raman, and XPS techniques. The formation mechanism of GdFeO3/RGO nanocomposite had been discussed. The effective intercalation of the nanostructured GdFeO3 to the RGO sheets leads to the significant enhancement in physicochemical properties such as electrical conductivity, electro-active surface area, structural stability, and electrochemical activity, which was observed from the EIS and CV experimental results. The electrochemical studies established that the developed GdFeO3/RGO sensor was highly sensitive and selective to NFT. Moreover, the GdFeO3/RGO sensor exhibits good sensitivity of 4.1985 μA μM−1 cm−2, a low detection limit (LOD) of 0.0153 µM and a linear range from 0.001 to 249 µM for NFT detection under optimized experimental conditions. In addition, the investigation of storage time on the CV response of the GdFeO3/RGO sensor indicates superior stability. Owing to these extraordinary analytical advantages, the as-fabricated sensor was applied to detect the NFT levels in human urine and river water samples with satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call